资源类型

期刊论文 1279

年份

2024 4

2023 181

2022 153

2021 133

2020 102

2019 94

2018 86

2017 79

2016 70

2015 71

2014 58

2013 31

2012 46

2011 34

2010 29

2009 24

2008 20

2007 16

2006 4

2005 2

展开 ︾

关键词

碳中和 11

二氧化碳 6

低碳经济 5

低碳发展 4

糖基化 4

N-糖基化 3

S-N曲线 3

低碳 3

医院中子照射器I型堆 3

天然气 3

CCS 2

COVID-19 2

产业结构 2

免疫球蛋白G 2

化石能源 2

固体氧化物燃料电池 2

小麦 2

机器学习 2

碳基燃料 2

展开 ︾

检索范围:

排序: 展示方式:

Bamboo-like -doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 498-510 doi: 10.1007/s11705-021-2082-6

摘要: The electrochemical conversion of CO2-H2O into CO-H2 using renewable energy is a promising technique for clean syngas production. Low-cost electrocatalysts to produce tunable syngas with a potential-independent CO/H2 ratio are highly desired. Herein, a series of N-doped carbon nanotubes encapsulating binary alloy nanoparticles (MxNi-NCNT, M= Fe, Co) were successfully fabricated through the co-pyrolysis of melamine and metal precursors. The MxNi-NCNT samples exhibited bamboo-like nanotubular structures with a large specific surface area and high degree of graphitization. Their electrocatalytic performance for syngas production can be tuned by changing the alloy compositions and modifying the electronic structure of the carbon nanotube through the encapsulated metal nanoparticles. Consequently, syngas with a wide range of CO/H2 ratios, from 0.5:1 to 3.4:1, can be produced on MxNi-NCNT. More importantly, stable CO/H2 ratios of 2:1 and 1.5:1, corresponding to the ratio to produce biofuels by syngas fermentation, could be realized on Co1Ni-NCNT and Co2Ni-NCNT, respectively, over a potential window of –0.8 to –1.2 V versus the reversible hydrogen electrode. Our work provides an approach to develop low-cost and potential-independent electrocatalysts to effectively produce syngas with an adjustable CO/H2 ratio from electrochemical CO2 reduction.

关键词: electrochemical reduction of CO2     syngas     N-doped carbon nanotubes     encapsulated alloy nanoparticles     CO/H2 ratio    

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 279-287 doi: 10.1007/s11705-020-1965-2

摘要: Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction (OER) catalyst. The surface features were extensively characterized using X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. On FeNi-modified carbon the overpotential for OER was very low (280 mV) and comparable to that on noble metal catalyst IrO . The electrochemical properties have been investigated to reveal the difference between the binary alloy- and single metal-doped carbons. This work demonstrates a significant step for the development of low-cost, environmentally-friendly and highly-efficient OER catalysts.

关键词: OER     polystyrene salt     porous carbon     FeNi alloy     p/n junction    

Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid)

Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 625-633 doi: 10.1007/s11783-014-0711-8

摘要: A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nanotubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravimetric analyzer (TGA) were used to characterize the Cu-PAA/MWCNTs. ( ) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/MWCNTs possessed strong antimicrobial ability on . The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.

关键词: multiwalled carbon nanotubes     copper nanoparticles     antimicrobial activity     Escherichia coli (E. coil)    

Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 491-503 doi: 10.1007/s11705-022-2257-9

摘要: As promising electrode materials for supercapacitors, nickel-cobalt bimetallic sulfides render the advantages of abundant redox reactions and inherently high conductivity. However, in general, unsatisfactory performance of low specific capacity, low rate capability, and fast capacity loss exist in Ni–Co sulfide electrodes. Herein, we rationally regulate phosphorus-doped nickel–cobalt sulfides (P-NCS) to enhance the electrochemical performance by gas–solid phosphorization. Moreover, carbon nanotubes (CNTs) as conductive additives are added to improve the cycle stability and conductivity and form the composite P-NCS/C/CNT. According to density functional theory, more electrons near the Fermi surface of P-NCS are demonstrated notionally than those of simple CoNi2S4. Electrochemical results manifest that P-NCS/C/CNT exhibits superior electrochemical performance, e.g., high specific capacity (932.0 C∙g‒1 at 1 A∙g‒1), remarkable rate capability (capacity retention ratio of 69.1% at 20 A∙g‒1), and lower charge transfer resistance. More importantly, the flexible hybrid asymmetric supercapacitor is assembled using P-NCS/C/CNT and activated carbon, which renders an energy density of 34.875 W·h∙kg‒1 at a power density of 375 W∙kg‒1. These results show that as-prepared P-NCS/C/CNT demonstrates incredible possibility as a battery-type electrode for high-performance supercapacitors.

关键词: cobalt nickel sulfide     phosphorus-doping     hybrid supercapacitor     carbon nanotube     density functional theory    

Carbon-doped surface unsaturated sulfur enriched CoS@rGO aerogel pseudocapacitive anode and biomass-derivedporous carbon cathode for advanced lithium-ion capacitors

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1500-1513 doi: 10.1007/s11705-021-2086-2

摘要: As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

关键词: in-situ carbon-doped     surface unsaturated sulfur enriched     pseudocapacitive energy storage     biomass-derived carbon     lithium-ion capacitors    

Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1397-3

摘要:

• Synthesis of NS-CNTS is used in a high desulfurization performance.

关键词: Dibenzothiophene (DBT)     Tertiary methyl mercaptan     Adsorption     Carbon nano tube (CNT)     Desulfurization     Doping    

Floret-like Fe–N nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 525-535 doi: 10.1007/s11705-022-2232-5

摘要: Fe–Nx nanoparticles-embedded porous carbons with a desirable superstructure have attracted immense attention as promising catalysts for electrochemical oxygen reduction reaction. Herein, we employed Fe-coordinated covalent triazine polymer for the fabrication of Fe–Nx nanoparticle-embedded porous carbon nanoflorets (Fe/N@CNFs) employing a hypersaline-confinement-conversion strategy. Presence of tailored N types within the covalent triazine polymer interwork in high proportions contributes to the generation of Fe/N coordination and subsequent Fe–Nx nanoparticles. Owing to the utilization of NaCl crystals, the resultant Fe/N@CNF-800 which was generated by pyrolysis at 800 °C showed nanoflower structure and large specific surface area, which remarkably suppressed the agglomeration of high catalytic active sites. As expect, the Fe/N@CNF-800 exhibited unexpected oxygen reduction reaction catalytic performance with an ultrahigh half-wave potential (0.89 V vs. reversible hydrogen electrode), a dominant 4e transfer approach and great cycle stability (> 92% after 100000 s). As a demonstration, the Fe/N-PCNF-800-assembled zinc–air battery delivered a high open circuit voltage of 1.51 V, a maximum peak power density of 164 mW·cm–2, as well as eminent rate performance, surpassing those of commercial Pt/C. This contribution offers a valuable avenue to exploit efficient metal nanoparticles-based carbon catalysts towards energy-related electrocatalytic reactions and beyond.

关键词: Fe–Nx nanoparticles     hypersaline-confinement conversion     floret-like carbon     covalent triazine polymers     oxygen reduction reaction    

Acid-treated carbon nanotubes and their effects on mortar strength

N. ABOU-ZEID

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 180-188 doi: 10.1007/s11709-015-0325-7

摘要: In the present study, multi-walled carbon nanotubes (MWCNTs) were treated in an acidic mixture solution, made with nitric and sulfuric acids in a ratio of 3:1 by volume. The durations of the treatment were 100 and 180 min. The defects of these treated MWCNTs were examined using Raman spectroscopy. The attachment of hydroxyl functional groups to the walls of the MWCNTs were verified using FTIR spectroscopy. The dispersion of CNTs with acid treatment is assessed using UV-Vis spectroscopy and Scanning Electron Microscopy (SEM). The results indicate that the duration of the acid treatment has significant effect on both the degree of defects and functionality of the MWCNT. The compressive strength of mortar increased with the addition of the acid-treated MWCNTs; however, no appreciable difference was noted for the two treatment durations under this study.

关键词: carbon nanotubes     concrete     composites     nanomaterials     cement    

A highly efficient methodology for the preparation of

Yongxin Zhang, Shucheng Wang, Yaodong Huang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 679-686 doi: 10.1007/s11705-020-1979-9

摘要: A convenient and highly efficient method is described for the synthesis of -methoxycarbazole derivatives, including those with sterically demanding, benzannulated, or strongly electron-donating or -withdrawing substituents. Various -methoxycarbazole derivatives were directly prepared in good-to-moderate yields by the Pd (dba) CHCl /9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene-catalyzed reactions of the corresponding dibromobiphenyl compounds and methoxya-mine. Based on this methodology, the first total synthesis of 3,3′-[oxybis(methylene)]bis(9-methoxy-9 -carbazole), an antimicrobial dimeric carbazole alkaloid previously isolated from the stem bark of , was achieved in 18% yield over seven steps from 1,2-dibromobenzene.

关键词: N-methoxyl carbazole     dimeric N-methoxyl carbazole     alkaloid     total synthesis     double N-arylation of methoxyamine    

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1367-1376 doi: 10.1007/s11705-022-2153-3

摘要: The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

关键词: metal phosphonate     cobalt/nickel phosphide     N-doped carbon     oxygen electrochemistry     Zn−air battery    

Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors

Wei Wang, Haijun Lv, Juan Du, Aibing Chen

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1312-1321 doi: 10.1007/s11705-020-2033-7

摘要: In this present work, N-doped carbon nanobelts (N-CNBs) were prepared by a confined-pyrolysis approach and the N-CNBs were derived from a polypyrrole (Ppy) tube coated with a compact silica layer. The silica layer provided a confined space for the Ppy pyrolysis, thereby hindering the rapid overflow of pyrolysis gas, which is the activator for the formation of carbonaceous materials. At the same time, the confined environment can activate the carbon shell to create a thin wall and strip the carbon tube into belt morphology. This process of confined pyrolysis realizes self-activation during the pyrolysis of Ppy to obtain the carbon nanobelts without adding any additional activator, which reduces pollution and preparation cost. In addition, this approach is simple to operate and avoids the disadvantages of other methods that consume time and materials. The as-prepared N-CNB shows cross-linked nanobelt morphology and a rich porous structure with a large specific surface area. As supercapacitor electrode materials, the N-CNB can present abundant active sites, and exhibits a specific capacitance of 246 F·g , and excellent ability with 95.44% retention after 10000 cycles. This indicates that the N-CNB is an ideal candidate as a supercapacitor electrode material.

关键词: carbon nanobelts     polypyrrole     N-doped     confined pyrolysis     supercapacitor    

Inhibition of NO emission by adding antioxidant mixture in

A. PRABU,R. B. ANAND

《能源前沿(英文)》 2015年 第9卷 第2期   页码 238-245 doi: 10.1007/s11708-015-0356-8

摘要: In this paper, the effect of adding an antioxidant mixture in biodiesel as fuel, in a single cylinder, direct injection compression ignition engine was experimentally investigated and the level of pollutants in the exhaust and performance characteristics of the engine were analyzed. Nine test fuels were prepared with three antioxidants, namely, Succinimide (C H NO ), , dimethyl- -phenylenediamine-dihydrochloride (C H Cl N ), and -phenyl- -phenylenediamine (C H NHC H NH ) added to neat biodiesel at 500 parts per million (ppm), 1000 ppm and 2000 ppm and the observed experimental results were compared with those of neat biodiesel and neat diesel as base fuels. The comparison showed that NO emission was reduced drastically for the test fuels with the antioxidant addition of 2000 ppm. The maximum reduction of 10% of NO emission was observed for the antioxidant mixture in neat biodiesel, with a slight increase in unburned HC, CO and smoke opacity. In addition, the obtained experimental results reveal that the addition of two antioxidants as mixture in neat biodiesel caused improved NO emission reduction for all test fuels.

关键词: NO emission     antioxidants     Succinimide     N     N-dimethyl-p-phenylenediamine-dihydrochloride     N-phenyl-p-phenylenediamine    

Thermogravimetric kinetic analysis of

SUKARNI,SUDJITO,Nurkholis HAMIDI,Uun YANUHAR,I.N.G. WARDANA

《能源前沿(英文)》 2015年 第9卷 第2期   页码 125-133 doi: 10.1007/s11708-015-0346-x

摘要: The thermal behavior of combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.

关键词: Nannochloropsis oculata     combustion     kinetic parameters     air atmosphere     thermogravimetric    

<i>Ni>-Positive ion activated rapid addition and mitochondrial targeting ratiometric fluorescent probesfor <i>in vivoi> cell H2S imaging

Yan Shi, Fangjun Huo, Yongkang Yue, Caixia Yin

《化学科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 64-71 doi: 10.1007/s11705-021-2048-8

摘要: Heterocyclic compound quinoline and its derivatives exist in natural compounds and have a broad spectrum of biological activity. They play an important role in the design of new structural entities for medical applications. Similarly, indoles and their derivatives are found widely in nature. Amino acids, alkaloids and auxin are all derivatives of indoles, as are dyes, and their condensation with aldehydes makes it easy to construct reaction sites for nucleophilic addition agents. In this work, we combine these two groups organically to construct a rapid response site (within 30 s) for H S, and at the same time, a ratiometric fluorescence response is presented throughout the process of H S detection. As such, the lower detection limit can reach 55.7 nmol/L for H S. In addition, cell imaging shows that this probe can be used for the mitochondrial targeted detection of endogenous and exogenous H S. Finally, this probe application was verified by imaging H S in nude mice.

关键词: heterocyclic compound     hydrogen sulfide     ratiometric     mitochondrial targeted    

of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-dopedcarbon nanoneedles

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1782-1792 doi: 10.1007/s11705-022-2220-9

摘要: Ultra-dispersed Ni nanoparticles (7.5 nm) on nitrogen-doped carbon nanoneedles (Ni@NCNs) were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines. Two different crystallization methods (stirring and static) were compared and the optimal pyrolysis temperature was explored. Ni@NCNs were systematically characterized by wide analytical techniques. In the hydrogenation of p-chloronitrobenzene, Ni@NCNs-600 (pyrolyzed at 600 °C) exhibited extraordinarily high performance with 77.9 h–1 catalytic productivity and > 99% p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions (90 °C, 1.5 MPa H2), showing obvious superiority compared with reported Ni-based catalysts. Notably, the reaction smoothly proceeded at room temperature with full conversion and > 99% selectivity. Moreover, Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups (halogen, nitrile, keto, carboxylic, etc.), and could be easily recycled by magnetic separation and reused for 5 times without deactivation. The adsorption tests showed that the preferential adsorption of –NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene, thus achieving high p-chloroaniline selectivity. While the high activity can be attributed to high Ni dispersion, special morphology, and rich pore structure of the catalyst.

关键词: halogenated nitrobenzenes     room-temperature hydrogenation     Ni nanoparticles     nitrogen-doped carbon nanoneedles     metal–organic-framework    

标题 作者 时间 类型 操作

Bamboo-like -doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of

期刊论文

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz

期刊论文

Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid)

Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN

期刊论文

Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor

期刊论文

Carbon-doped surface unsaturated sulfur enriched CoS@rGO aerogel pseudocapacitive anode and biomass-derivedporous carbon cathode for advanced lithium-ion capacitors

期刊论文

Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization

期刊论文

Floret-like Fe–N nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer

期刊论文

Acid-treated carbon nanotubes and their effects on mortar strength

N. ABOU-ZEID

期刊论文

A highly efficient methodology for the preparation of

Yongxin Zhang, Shucheng Wang, Yaodong Huang

期刊论文

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

期刊论文

Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors

Wei Wang, Haijun Lv, Juan Du, Aibing Chen

期刊论文

Inhibition of NO emission by adding antioxidant mixture in

A. PRABU,R. B. ANAND

期刊论文

Thermogravimetric kinetic analysis of

SUKARNI,SUDJITO,Nurkholis HAMIDI,Uun YANUHAR,I.N.G. WARDANA

期刊论文

<i>Ni>-Positive ion activated rapid addition and mitochondrial targeting ratiometric fluorescent probesfor <i>in vivoi> cell H2S imaging

Yan Shi, Fangjun Huo, Yongkang Yue, Caixia Yin

期刊论文

of halogenated nitrobenzenes over metal–organic-framework-derived ultra-dispersed Ni stabilized by N-dopedcarbon nanoneedles

期刊论文